Short Time Identification of Feed Drive Systems using Nonlinear Least Squares Method

نویسندگان

  • M. G. A. Nassef
  • C. Schenck
  • B. Kuhfuss Short
چکیده

Design and modeling of nonlinear systems require the knowledge of all inside acting parameters and effects. An empirical alternative is to identify the system’s transfer function from input and output data as a black box model. This paper presents a procedure using least squares algorithm for the identification of a feed drive system coefficients in time domain using a reduced model based on windowed input and output data. The command and response of the axis are first measured in the first 4 ms, and then least squares are applied to predict the transfer function coefficients for this displacement segment. From the identified coefficients, the next command response segments are estimated. The obtained results reveal a considerable potential of least squares method to identify the system’s time-based coefficients and predict accurately the command response as compared to measurements. Keywords—feed drive systems, least squares algorithm, online parameter identification, short time window

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification and Adaptive Position and Speed Control of Permanent Magnet DC Motor with Dead Zone Characteristics Based on Support Vector Machines

In this paper a new type of neural networks known as Least Squares Support Vector Machines which gained a huge fame during the recent years for identification of nonlinear systems has been used to identify DC motor with nonlinear dead zone characteristics. The identified system after linearization in each time span, in an online manner provide the model data for Model Predictive Controller of p...

متن کامل

Harmonics Estimation in Power Systems using a Fast Hybrid Algorithm

In this paper a novel hybrid algorithm for harmonics estimation in power systems is proposed. The estimation of the harmonic components is a nonlinear problem due to the nonlinearity of phase of sinusoids in distorted waveforms. Most researchers implemented nonlinear methods to extract the harmonic parameters. However, nonlinear methods for amplitude estimation increase time of convergence. Hen...

متن کامل

Nonlinear Parametric Identification of an IPMC Actuator Model

Ionic polymer metal composite is a class of electro-active polymers which are very attractive smart actuators due to its large bending deflection, high mechanical flexibility, low excitation voltage, low density, and ease of fabrication. These properties make IPMC a proper candidate for many applications in various fields such as robotics, aerospace, biomedicine, etc. Although the actuation beh...

متن کامل

A Global Nonlinear Instrumental Variable Method for Identification of Continuous-Time Systems with Unknown Time Delays

This paper considers the identification problem of continuous-time systems with unknown time delays from sampled input-output data. An iterative global separable nonlinear least-squares (GSEPNLS) method which estimates the time delays and transfer function parameters separably is derived, by using stochastic global-optimization technique to avoid convergence to a local minimum. Futhermore, the ...

متن کامل

Modelling and Identification of Robots with Both Joint and Drive Flexibilities

Modelling and identification of flexible-joint robots is required for dynamic simulation and model based control of industrial robots. A nonlinear finite element based method is used to derive the dynamic equations of motion in a form suitable for both simulation and identification. The latter requires that the equations of motion are linear in the dynamic parameters. For accurate simulations o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011